Estimating Multivariate Latent - Structure Models
نویسندگان
چکیده
A constructive proof of identification of multilinear decompositions of multiway arrays is presented. It can be applied to show identification in a variety of multivariate latent structures. Examples are finite-mixture models and hidden Markov models. The key step to show identification is the joint diagonalization of a set of matrices in the same nonorthogonal basis. An estimator of the latent-structure model may then be based on a sample version of this joint-diagonalization problem. Algorithms are available for computation and we derive distribution theory. We further develop asymptotic theory for orthogonal-series estimators of component densities in mixture models and emission densities in hidden Markov models.
منابع مشابه
Using multivariate generalized linear latent variable models to measure the difference in event count for stranded marine animals
BACKGROUND AND OBJECTIVES: The classification of marine animals as protected species makes data and information on them to be very important. Therefore, this led to the need to retrieve and understand the data on the event counts for stranded marine animals based on location emergence, number of individuals, behavior, and threats to their presence. Whales are g...
متن کاملBayesian Estimation of Discrete Multivariate Latent Structure Models with Structural Zeros
In multivariate categorical data, models based on conditional independence assumptions, such as latent class models, offer efficient estimation of complex dependencies. However, Bayesian versions of latent structure models for categorical data typically do not appropriately handle impossible combinations of variables, also known as structural zeros. Allowing non-zero probability for impossible ...
متن کاملRisk Management in Oil Market: A Comparison between Multivariate GARCH Models and Copula-based Models
H igh price volatility and the risk are the main features of commodity markets. One way to reduce this risk is to apply the hedging policy by future contracts. In this regard, in this paper, we will calculate the optimal hedging ratios for OPEC oil. In this study, besides the multivariate GARCH models, for the first time we use conditional copula models for modelling dependence struc...
متن کاملBayesian Latent Threshold Modeling: Multivariate Time Series and Dynamic Networks
We discuss dynamic network modeling for multivariate time series, exploiting dynamic variable selection and model structure uncertainty strategies based on the recently introduced concept of “latent thresholding.” This dynamic modeling concept addresses a critical and challenging problem in multivariate time series and dynamic modeling: that of inducing formal probabilistic structures that are ...
متن کاملA Semiparametric Approach to Mixed Outcome Latent Variable Models: Estimating the Association between Cognition and Regional Brain Volumes
Multivariate data that combine binary, categorical, count and continuous outcomes are common in the social and health sciences. Often, mixed outcome variables together are considered to be tapping a particular latent construct. A common research question then focuses on estimation of the relationship between a latent construct and a scientifically important covariate of interest. A motivating e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015